Show simple item record

dc.contributor.authorRegev, Aviv
dc.date.accessioned2020-04-30T17:31:22Z
dc.date.available2020-04-30T17:31:22Z
dc.date.issued2019-10-21
dc.identifier.issn1474-760X
dc.identifier.urihttps://hdl.handle.net/1721.1/124943
dc.description.abstractBackground: Accurate fusion transcript detection is essential for comprehensive characterization of cancer transcriptomes. Over the last decade, multiple bioinformatic tools have been developed to predict fusions from RNA-seq, based on either read mapping or de novo fusion transcript assembly. Results: We benchmark 23 different methods including applications we develop, STAR-Fusion and TrinityFusion, leveraging both simulated and real RNA-seq. Overall, STAR-Fusion, Arriba, and STAR-SEQR are the most accurate and fastest for fusion detection on cancer transcriptomes. Conclusion: The lower accuracy of de novo assembly-based methods notwithstanding, they are useful for reconstructing fusion isoforms and tumor viruses, both of which are important in cancer research.en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant U24CA180922)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant R50CA211461)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant R21CA209940)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Grant U01CA214846)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1186/s13059-019-1842-9en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceBioMed Central (BMC)en_US
dc.titleAccuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methodsen_US
dc.typeArticleen_US
dc.identifier.citationHaas, Brian J. et al. “Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods.” Genome biology 20 (2019): 213 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.relation.journalGenome biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-01-28T19:09:16Z
dspace.date.submission2020-01-28T19:09:18Z
mit.journal.volume20en_US
mit.journal.issue1en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record