Show simple item record

dc.contributor.authorMa, Qiong
dc.contributor.authorXu, Su-Yang
dc.contributor.authorShen, Huitao
dc.contributor.authorMacNeill, David
dc.contributor.authorFatemi, Valla
dc.contributor.authorChang, Tay-Rong
dc.contributor.authorMier Valdivia, Andrés M.
dc.contributor.authorWu, Sanfeng
dc.contributor.authorDu, Zongzheng
dc.contributor.authorHsu, Chuang-Han
dc.contributor.authorFang, Shiang
dc.contributor.authorGibson, Quinn D.
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorCava, Robert J.
dc.contributor.authorKaxiras, Efthimios
dc.contributor.authorLu, Hai-Zhou
dc.contributor.authorLin, Hsin
dc.contributor.authorFu, Liang
dc.contributor.authorGedik, Nuh
dc.contributor.authorJarillo-Herrero, Pablo
dc.date.accessioned2020-04-30T19:36:30Z
dc.date.available2020-04-30T19:36:30Z
dc.date.issued2018-12
dc.date.submitted2018-07
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.urihttps://hdl.handle.net/1721.1/124951
dc.description.abstractThe electrical Hall effect is the production, upon the application of an electric field, of a transverse voltage under an out-of-plane magnetic field. Studies of the Hall effect have led to important breakthroughs, including the discoveries of Berry curvature and topological Chern invariants. The internal magnetization of magnets means that the electrical Hall effect can occur in the absence of an external magnetic field; this ‘anomalous’ Hall effect is important for the study of quantum magnets. The electrical Hall effect has rarely been studied in non-magnetic materials without external magnetic fields, owing to the constraint of time-reversal symmetry. However, only in the linear response regime—when the Hall voltage is linearly proportional to the external electric field—does the Hall effect identically vanish as a result of time-reversal symmetry; the Hall effect in the nonlinear response regime is not subject to such symmetry constraints. Here we report observations of the nonlinear Hall effect in electrical transport in bilayers of the non-magnetic quantum material WTe 2 under time-reversal-symmetric conditions. We show that an electric current in bilayer WTe 2 leads to a nonlinear Hall voltage in the absence of a magnetic field. The properties of this nonlinear Hall effect are distinct from those of the anomalous Hall effect in metals: the nonlinear Hall effect results in a quadratic, rather than linear, current–voltage characteristic and, in contrast to the anomalous Hall effect, the nonlinear Hall effect results in a much larger transverse than longitudinal voltage response, leading to a nonlinear Hall angle (the angle between the total voltage response and the applied electric field) of nearly 90 degrees. We further show that the nonlinear Hall effect provides a direct measure of the dipole moment of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe 2 . Our results demonstrate a new type of Hall effect and provide a way of detecting Berry curvature in non-magnetic quantum materials. © 2018, Springer Nature Limited.en_US
dc.description.sponsorshipCenter for Excitonics (Award DESC0001088)en_US
dc.description.sponsorshipAFOSR (grant FA9550-16-1-0382)en_US
dc.description.sponsorshipGordon and Betty Moore Foundation’s EPiQS Initiative (Grant GBMF4541)en_US
dc.description.sponsorshipNational Science Foundation (NSF) (Grant DMR-0819762)en_US
dc.description.sponsorshipGordon and Betty Moore Foundation's EPiQS Initiative (Grant GBMF4540)en_US
dc.description.sponsorshipNSF MRSEC (grant DMR-1420541)en_US
dc.description.sponsorshipGuangdong Innovative and Entrepreneurial Research Team Program 2016ZT06D348en_US
dc.description.sponsorshipNational Key R & D Program (2016YFA0301700)en_US
dc.description.sponsorshipNational Natural Science Foundation of China (11574127)en_US
dc.description.sponsorshipe Science, Technology, and Innovation Commission of Shenzhen Municipality (ZDSYS20170303165926217)en_US
dc.description.sponsorshipMEXT, Japan, JSPS KAKENHI Grant JP18K19136en_US
dc.description.sponsorshipCREST (JPMJCR15F3)en_US
dc.description.sponsorshipNSF Science and Technology Center for Integrated Quantum Materials grant DMR-1231319en_US
dc.description.sponsorshipMOST Grant for the Columbus Program 107-2636-M-006-004-en_US
dc.description.sponsorshipARO MURI Award W911NF-14-0247en_US
dc.publisherNature Researchen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41586-018-0807-6en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcearXiven_US
dc.titleObservation of the nonlinear Hall effect under time-reversal-symmetric conditionsen_US
dc.typeArticleen_US
dc.identifier.citationMa, Qiong, et al. “Observation of the Nonlinear Hall Effect Under Time-Reversal-Symmetric Conditions.” Nature 565 (December 2018): 337–342 © Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.relation.journalNatureen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-03-22T17:52:29Z
dspace.orderedauthorsMa, Qiong; Xu, Su-Yang; Shen, Huitao; MacNeill, David; Fatemi, Valla; Chang, Tay-Rong; Mier Valdivia, Andrés M.; Wu, Sanfeng; Du, Zongzheng; Hsu, Chuang-Han; Fang, Shiang; Gibson, Quinn D.; Watanabe, Kenji; Taniguchi, Takashi; Cava, Robert J.; Kaxiras, Efthimios; Lu, Hai-Zhou; Lin, Hsin; Fu, Liang; Gedik, Nuh; Jarillo-Herrero, Pabloen_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T11:01:44Z
mit.journal.volume565en_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record