Show simple item record

dc.contributor.authorLiu, Tianren
dc.contributor.authorVaikuntanathan, Vinod
dc.contributor.authorWee, Hoeteck
dc.date.accessioned2020-04-30T20:00:05Z
dc.date.available2020-04-30T20:00:05Z
dc.date.issued2008-03
dc.identifier.isbn978-3-319-78380-2
dc.identifier.issn978-3-319-78381-9
dc.identifier.urihttps://hdl.handle.net/1721.1/124959
dc.description.abstractA secret-sharing scheme for a monotone Boolean (access) function F: {0, 1}[superscript n] → {0, 1} is a randomized algorithm that on input a secret, outputs n shares s[subscript 1]., s[subscript n] such that for any (x[subscript 1]., x[subscript n]) ∈ {0, 1}[superscript n] the collection of shares {s[subscript i]: xi = 1} determine the secret if F(x[subscript 1]., x[subscript n]) = 1 and reveal nothing about the secret otherwise. The best secret sharing schemes for general monotone functions have shares of size Θ(2[superscript n]). It has long been conjectured that one cannot do much better than 2[superscript Ω(n)] share size, and indeed, such a lower bound is known for the restricted class of linear secret-sharing schemes. In this work, we refute two natural strengthenings of the above conjecture: First, we present secret-sharing schemes for a family of 2[superscript 2[superscript n/2]] monotone functions over {0, 1}[superscript n] with sub-exponential share size 2[superscript O(√ n log n)]. This unconditionally refutes the stronger conjecture that circuit size is, within polynomial factors, a lower bound on the share size. Second, we disprove the analogous conjecture for non-monotone functions. Namely, we present “non-monotone secret-sharing schemes” for every access function over {0, 1}[superscript n] with shares of size 2[superscript O(√ n log n)]. Our construction draws upon a rich interplay amongst old and new problems in information-theoretic cryptography: from secret-sharing, to multi-party computation, to private information retrieval. Along the way, we also construct the first multi-party conditional disclosure of secrets (CDS) protocols for general functions F: {0, 1}[superscript n]→ {0, 1} with communication complexity 2[superscript O(√ n log n)].en_US
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-78381-9_21en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleTowards breaking the exponential barrier for general secret sharingen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Tianren, et al. “Towards Breaking the Exponential Barrier for General Secret Sharing.” Advances in Cryptology – EUROCRYPT 2018, edited by Jesper Buus Nielsen and Vincent Rijmen, vol. 10820, Springer International Publishing (2018): 567–96.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalAdvances in Cryptology – EUROCRYPT 2018en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-09T16:55:22Z
dspace.date.submission2019-07-09T16:55:23Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record