MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Entropy under additive Bernoulli and spherical noises

Author(s)
Ordentlich, Or; Polyanskiy, Yury
Thumbnail
DownloadAccepted version (92.42Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Let Z[superscript n] be iid Bernoulli (δ) and U[superscript n] be uniform on the set of all binary vectors of weight δ[superscript n] (Hamming sphere). As is well known, the entropies of Z[superscript n] and U[superscript n] are within O(√n). However, if X[superscript n] is another binary random variable independent of Z[superscript n] and U[superscript n], we show that H(X[superscript n]+U[superscript n]) and H(X[superscript n]+Z[superscript n]) are within O(√n) and this estimate is tight. The bound is shown via coupling method. Tightness follows from the observation that the channels x[superscript n]⟼x[superscript n]+U[superscript n] and x[superscript n]⟼x[superscript n]+Z[superscript n] have similar capacities, but the former has zero dispersion. Finally, we show that despite the √n slack in general, the Mrs. Gerber Lemma for H(X[superscript n]+U[superscript n]) holds with only an O(log n) correction compared to its brethren for H(X[superscript n]+Z[superscript n]). ©2019 Paper presented at the 2018 IEEE International Symposium on Information Theory (ISIT 2018), June 17-22, 2018, Vail, Colo.
Date issued
2018-06
URI
https://hdl.handle.net/1721.1/124986
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
2018 IEEE International Symposium on Information Theory (ISIT)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Ordentlich, Or, and Yury Polyanskiy, "Entropy under additive Bernoulli and spherical noises." 2018 IEEE International Symposium on Information Theory (ISIT 2018) (Piscataway, N.J.: IEEE, 2018): p. 521-25 doi 10.1109/ISIT.2018.8437589 ©2018 Author(s)
Version: Author's final manuscript
ISBN
978-1-5386-4780-6

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.