dc.contributor.author | Alon, Noga | |
dc.contributor.author | Bukh, Boris | |
dc.contributor.author | Polyanskiy, Yury | |
dc.date.accessioned | 2020-05-04T16:32:23Z | |
dc.date.available | 2020-05-04T16:32:23Z | |
dc.date.issued | 2019-03 | |
dc.identifier.issn | 0018-9448 | |
dc.identifier.issn | 1557-9654 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/124995 | |
dc.description.abstract | We consider list decoding in the zero-rate regime for two cases: the binary alphabet and the spherical codes in Euclidean space. Specifically, we study the maximal τ ϵ [0,1] for which there exists an arrangement of M balls of relative Hamming radius τ in the binary hypercube (of arbitrary dimension) with the property that no point of the latter is covered by L or more of them. As M → ∞ the maximal τ decreases to a well-known critical value T[subscript L]. In this paper, we prove several results on the rate of this convergence. For the binary case, we show that the rate is Θ (M-¹) when L is even, thus extending the classical results of Plotkin and Levenshtein for L=2. For L=3 , the rate is shown to be Θ (M -(2/3) ). For the similar question about spherical codes, we prove the rate is Ω (M-¹) and O([mathematical figure; see resource]). ©2019 | en_US |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | 10.1109/TIT.2018.2868957 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | List-decodable zero-rate codes | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Alon, Noga, Boris Bukh, and Yury Polyanskiy, "List-decodable zero-rate codes." IEEE Transactions on Information Theory 65, 3 (Mar. 2019): p. 1657-67 doi 10.1109/TIT.2018.2868957 ©2019 Author(s) | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.relation.journal | IEEE Transactions on Information Theory | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2019-07-01T18:02:41Z | |
dspace.date.submission | 2019-07-01T18:02:42Z | |
mit.journal.volume | 65 | en_US |
mit.journal.issue | 3 | en_US |
mit.metadata.status | Complete | |