Show simple item record

dc.contributor.authorLusztig, George
dc.date.accessioned2020-05-05T17:33:17Z
dc.date.available2020-05-05T17:33:17Z
dc.date.issued2018-04
dc.identifier.issn1088-4165
dc.identifier.urihttps://hdl.handle.net/1721.1/125017
dc.description.abstractLet N be the normalizer of a maximal torus T in a split reductive group over Fq, and let w be an involution in theWeyl group N/T. We explicitly construct a lifting n of w in N such that the image of n under the Frobenius map is equal to the inverse of n.en_US
dc.language.isoen
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1090/ert/513en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleLifting involutions in a Weyl group to the torus normalizeren_US
dc.typeArticleen_US
dc.identifier.citationLusztig, G. et al. "Lifting involutions in a Weyl group to the torus normalizer." Representation Theory 22 (April 2018): 27-44 © 2018 American Mathematical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalRepresentation Theoryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-14T18:53:05Z
dspace.date.submission2019-11-14T18:53:10Z
mit.journal.volume22en_US
mit.journal.issue2en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record