dc.contributor.author | Lusztig, George | |
dc.date.accessioned | 2020-05-05T17:33:17Z | |
dc.date.available | 2020-05-05T17:33:17Z | |
dc.date.issued | 2018-04 | |
dc.identifier.issn | 1088-4165 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/125017 | |
dc.description.abstract | Let N be the normalizer of a maximal torus T in a split reductive group over Fq, and let w be an involution in theWeyl group N/T. We explicitly construct a lifting n of w in N such that the image of n under the Frobenius map is equal to the inverse of n. | en_US |
dc.language.iso | en | |
dc.publisher | American Mathematical Society (AMS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1090/ert/513 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | American Mathematical Society | en_US |
dc.title | Lifting involutions in a Weyl group to the torus normalizer | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Lusztig, G. et al. "Lifting involutions in a Weyl group to the torus normalizer." Representation Theory 22 (April 2018): 27-44 © 2018 American Mathematical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.relation.journal | Representation Theory | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2019-11-14T18:53:05Z | |
dspace.date.submission | 2019-11-14T18:53:10Z | |
mit.journal.volume | 22 | en_US |
mit.journal.issue | 2 | en_US |
mit.metadata.status | Complete | |