MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hecke modules based on involutions in extended Weyl groups

Author(s)
Lusztig, George
Thumbnail
DownloadPublished version (397.9Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Let X be the group of weights of a maximal torus of a simply connected semisimple group over C and let W be the Weyl group. The semidirect product W((Q ⊗ X)/X) is called an extended Weyl group. There is a natural C(v)-algebra H called the extended Hecke algebra with basis indexed by the extended Weyl group which contains the usual Hecke algebra as a subalgebra. We construct an H-module with basis indexed by the involutions in the extended Weyl group. This generalizes a construction of the author and Vogan.
Date issued
2018-12
URI
https://hdl.handle.net/1721.1/125018
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Representation Theory
Publisher
American Mathematical Society (AMS)
Citation
Lusztig, G. "Hecke modules based on involutions in extended Weyl groups." Representation Theory 22 (December 2018): 246-277 © 2018 American Mathematical Society
Version: Final published version
ISSN
1088-4165

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.