Show simple item record

dc.contributor.authorTrusheim, Matthew E.
dc.contributor.authorPingault, Benjamin
dc.contributor.authorWan, Noel H.
dc.contributor.authorGündoğan, Mustafa
dc.contributor.authorDe Santis, Lorenzo
dc.contributor.authorDebroux, Romain
dc.contributor.authorGangloff, Dorian
dc.contributor.authorPurser, Carola
dc.contributor.authorChen, Kevin C.
dc.contributor.authorWalsh, Michael
dc.contributor.authorRose, Joshua J.
dc.contributor.authorBecker, Jonas N.
dc.contributor.authorLienhard, Benjamin
dc.contributor.authorBersin, Eric
dc.contributor.authorParadeisanos, Ioannis
dc.contributor.authorWang, Gang
dc.contributor.authorLyzwa, Dominika
dc.contributor.authorMontblanch, Alejandro R-P.
dc.contributor.authorMalladi, Girish
dc.contributor.authorBakhru, Hassaram
dc.date.accessioned2020-05-05T18:05:29Z
dc.date.available2020-05-05T18:05:29Z
dc.date.issued2020-01-14
dc.date.submitted2018-11
dc.identifier.issn1079-7114
dc.identifier.issn0031-9007
dc.identifier.urihttps://hdl.handle.net/1721.1/125020
dc.description.abstractSolid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T[subscript 1]>10  ms, and the coherence time, T[subscript 2 under superscript *] reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications. ©2020en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionof10.1103/PhysRevLett.124.023602en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleTransform-limited photons from a coherent tin-vacancy spin in diamonden_US
dc.typeArticleen_US
dc.identifier.citationTrusheim, Matthew E., et al., "Transform-limited photons from a coherent tin-vacancy spin in diamond." Physical Review Letters 124, 1 (Jan.2020): no. 023602 doi 10.1103/PhysRevLett.124.023602 ©2020 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-01-14T20:46:47Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.date.submission2020-01-14T20:46:47Z
mit.journal.volume124en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record