Show simple item record

dc.contributor.authorAvkhadiev, Artur Ramisovich
dc.contributor.authorShanahan, Phiala
dc.contributor.authorYoung, R. D.
dc.date.accessioned2020-05-06T14:41:17Z
dc.date.available2020-05-06T14:41:17Z
dc.date.issued2020-02-26
dc.date.submitted2019-08
dc.identifier.issn1079-7114
dc.identifier.issn0031-9007
dc.identifier.urihttps://hdl.handle.net/1721.1/125042
dc.description.abstractThe only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics. ©2020en_US
dc.description.sponsorshipU.S. Department of Energy, Office of Science, Office of Nuclear Physics (grant no. DE-SC0011090)en_US
dc.description.sponsorshipNational Science Foundation CAREER (grant no. 1841699)en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionof10.1103/PhysRevLett.124.080501en_US
dc.rightsCreative Commons Attribution 3.0 unported licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_US
dc.sourceAmerican Physical Societyen_US
dc.titleAccelerating lattice quantum field theory calculations via interpolator optimization using noisy intermediate-scale quantum computingen_US
dc.typeArticleen_US
dc.identifier.citationAvkhadiev, A., P.E. Shanahan, and R.D. Young, "Accelerating lattice quantum field theory calculations via interpolator optimization using noisy intermediate-scale quantum computing." Physical Review Letters 124 (Aug. 2020): no. 080501 doi 10.1103/PhysRevLett.124.080501 ©2020 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-02-26T15:35:05Z
dc.language.rfc3066en
dspace.date.submission2020-02-26T15:35:04Z
mit.journal.volume124en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record