MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations

Author(s)
Chiloyan, Vazrik; Huberman, Samuel; Maznev, Alexei A.; Nelson, Keith A.; Chen, Gang
Thumbnail
DownloadAPL19-AR-10223.pdf (427.7Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
While classical size effects usually lead to a reduced effective thermal conductivity, we report here that nonthermal phonon populations produced by a micro/nanoscale heat source can lead to enhanced heat conduction, exceeding the prediction from Fourier's law. We study nondiffusive thermal transport by phonons at small distances within the framework of the Boltzmann transport equation (BTE) and demonstrate that the transport is significantly affected by the distribution of phonons emitted by the source. We discuss analytical solutions of the steady-state BTE for a source with a sinusoidal spatial profile, as well as for a three-dimensional Gaussian “hot spot,” and provide numerical results for single crystal silicon at room temperature. If a micro/nanoscale heat source produces a thermal phonon distribution, it gets hotter than that predicted by the heat diffusion equation; however, if the source predominantly produces low-frequency acoustic phonons with long mean free paths, it may get significantly cooler than that predicted by the heat equation, yielding an enhanced heat transport beyond bulk heat conduction.
Date issued
2020-04
URI
https://hdl.handle.net/1721.1/125057
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Chemistry
Journal
Applied Physics Letters
Publisher
AIP Publishing
Citation
Chiloyan, Vazrik et al. "Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations." Applied Physics Letters 116, 16 (April 2020): 163102 © 2020 Author(s)
Version: Author's final manuscript
ISSN
0003-6951
1077-3118

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.