MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Axial Casimir force

Author(s)
Jiang, Qing-Dong; Wilczek, Frank
Thumbnail
DownloadPhysRevB.99.165402.pdf (937.8Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Quantum fluctuations in vacuum can exert a dissipative force on moving objects, which is known as Casimir friction. Especially, a rotating particle in the vacuum will eventually slow down due to the dissipative Casimir friction. Here, we identify a dissipationless force by examining a rotating particle near a bi-isotropic media that generally breaks parity symmetry or/and time-reversal symmetry. The direction of the dissipationless vacuum force is always parallel with the rotating axis of the particle. We therefore call this dissipationless vacuum force the axial Casimir force.
Date issued
2019-04
URI
https://hdl.handle.net/1721.1/125067
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Jiang, Qing-Dong, and Frank Wilczek. “Axial Casimir Force.” Physical Review B 99, 16 (April 2019): 165402. © 2019 American Physical Society
Version: Final published version
ISSN
2469-9950
2469-9969

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.