MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamics of an Abyssal Circulation Driven by Bottom-Intensified Mixing on Slopes

Author(s)
Callies, Jörn; Ferrari, Raffaele
Thumbnail
DownloadPublished version (35.33Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The large-scale circulation of the abyssal ocean is enabled by small-scale diapycnal mixing, which observations suggest is strongly enhanced toward the ocean bottom, where the breaking of internal tides and lee waves is most vigorous. As discussed recently, bottom-intensified mixing induces a pattern of near-bottom upand downwelling that is quite different from the traditionally assumed widespread upwelling. Here the consequences of bottom-intensified mixing for the horizontal circulation of the abyssal ocean are explored by considering planetary geostrophic dynamics in an idealized ''bathtub geometry.'' Up- and downwelling layers develop on bottom slopes as expected, and these layers are well described by boundary layer theory. The basin-scale circulation is driven by flows in and out of these boundary layers at the base of the sloping topography, which creates primarily zonal currents in the interior and a net meridional exchange along western boundaries. The rate of the net overturning is controlled by the up- and downslope transports in boundary layers on slopes and can be predicted with boundary layer theory. ©2018 American Meteorological Society.
Date issued
2018-06
URI
https://hdl.handle.net/1721.1/125088
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Physical Oceanography
Publisher
American Meteorological Society
Citation
Callies, Jörn and Raffaele Ferrari, "Dynamics of an Abyssal Circulation Driven by Bottom-Intensified Mixing on Slopes." Journal of Physical Oceanography 48, 6 (June 2018): 1257-82 doi. 10.1175/JPO-D-17-0125.1 ©2018 Authors
Version: Final published version
ISSN
1520-0485

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.