Show simple item record

dc.contributor.authorJin, Miaomiao
dc.contributor.authorCao, Penghui
dc.contributor.authorShort, Michael P.
dc.date.accessioned2020-05-08T16:54:05Z
dc.date.available2020-05-08T16:54:05Z
dc.date.issued2018-04
dc.date.submitted2017-12
dc.identifier.issn1359-6454
dc.identifier.urihttps://hdl.handle.net/1721.1/125141
dc.description.abstractUnderstanding and predicting radiation damage is of central importance to develop radiation-tolerant structural materials for current and next-generation nuclear systems. Single-phase solid solution alloys constitute attractive choices due to their promising mechanical properties and radiation tolerance. Here, by examining radiation-induced defect production and evolution in single-phase Ni-Fe alloys, we show that radiation damage resistance directly correlates with thermodynamic mixing energy and heterogeneity of defect diffusion. We found that radiation damage in materials decreases linearly with lowering mixing energy, and the relationship holds true for all studied Ni-Fe compositions. The damage reduction with varying composition is further ascribed to the increasing heterogeneity of point defect migration across a complex potential energy landscape that enhances defect recombination. This new insight into the dynamical evolution of radiation defects points to a thermodynamic criterion for designing radiation-tolerant materials.en_US
dc.language.isoen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.actamat.2017.12.064en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Shorten_US
dc.titleThermodynamic mixing energy and heterogeneous diffusion uncover the mechanisms of radiation damage reduction in single-phase Ni-Fe alloysen_US
dc.typeArticleen_US
dc.identifier.citationJin, Miaomiao et al. "Thermodynamic mixing energy and heterogeneous diffusion uncover the mechanisms of radiation damage reduction in single-phase Ni-Fe alloys." Acta Materialia 147 (April 2018): 16-23 © 2018 Acta Materialia Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.approverShort, Michael Philipen_US
dc.relation.journalActa Materialiaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T13:00:52Z
mit.journal.volume147en_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record