Show simple item record

dc.contributor.authorvan Galen, Peter
dc.contributor.authorHovestadt, Volker
dc.contributor.authorWadsworth II, Marc H.
dc.contributor.authorHughes, Travis K.
dc.contributor.authorGriffin, Gabriel K.
dc.contributor.authorBattaglia, Sofia
dc.contributor.authorVerga, Julia A.
dc.contributor.authorStephansky, Jason
dc.contributor.authorPastika, Timothy J.
dc.contributor.authorLombardi Story, Jennifer
dc.contributor.authorPinkus, Geraldine S.
dc.contributor.authorPozdnyakova, Olga
dc.contributor.authorGalinsky, Ilene
dc.contributor.authorStone, Richard M.
dc.contributor.authorGraubert, Timothy A.
dc.contributor.authorShalek, Alex K.
dc.contributor.authorAster, Jon C.
dc.contributor.authorLane, Andrew A.
dc.contributor.authorBernstein, Bradley E.
dc.date.accessioned2020-05-11T19:28:19Z
dc.date.available2020-05-11T19:28:19Z
dc.date.issued2019-03
dc.date.submitted2018-12
dc.identifier.issn0092-8674
dc.identifier.urihttps://hdl.handle.net/1721.1/125158
dc.description.abstractAcute myeloid leukemia (AML) is a heterogeneous disease that resides within a complex microenvironment, complicating efforts to understand how different cell types contribute to disease progression. We combined single-cell RNA sequencing and genotyping to profile 38,410 cells from 40 bone marrow aspirates, including 16 AML patients and five healthy donors. We then applied a machine learning classifier to distinguish a spectrum of malignant cell types whose abundances varied between patients and between subclones in the same tumor. Cell type compositions correlated with prototypic genetic lesions, including an association of FLT3-ITD with abundant progenitor-like cells. Primitive AML cells exhibited dysregulated transcriptional programs with co-expression of stemness and myeloid priming genes and had prognostic significance. Differentiated monocyte-like AML cells expressed diverse immunomodulatory genes and suppressed T cell activity in vitro. In conclusion, we provide single-cell technologies and an atlas of AML cell states, regulators, and markers with implications for precision medicine and immune therapies. Video Abstract: A combination of transcriptomics and mutational analyses in single cells from acute myeloid leukemia patients reveals the existence of distinct functional subsets and their associated drivers.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cell.2019.01.031en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleSingle-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunityen_US
dc.typeArticleen_US
dc.identifier.citationvan Galen, Peter et al. "Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity." Cell 176, 6 (March 2019): P1265-1281.e24 © 2019 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.relation.journalCellen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-03-17T17:17:52Z
dspace.date.submission2020-03-17T17:18:37Z
mit.journal.volume176en_US
mit.journal.issue6en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record