MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolutionary Convergence of Pathway-Specific Enzyme Expression Stoichiometry

Author(s)
Lalanne, Jean-Benoît; Taggart, James C.; Guo, Monica S.; Herzel, Lydia; Schieler, Ariel; Li, Gene-Wei; ... Show more Show less
Thumbnail
DownloadAccepted version (3.301Mb)
Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
oexpression of proteins in response to pathway-inducing signals is the founding paradigm of gene regulation. However, it remains unexplored whether the relative abundance of co-regulated proteins requires precise tuning. Here, we present large-scale analyses of protein stoichiometry and corresponding regulatory strategies for 21 pathways and 67–224 operons in divergent bacteria separated by 0.6–2 billion years. Using end-enriched RNA-sequencing (Rend-seq) with single-nucleotide resolution, we found that many bacterial gene clusters encoding conserved pathways have undergone massive divergence in transcript abundance and architectures via remodeling of internal promoters and terminators. Remarkably, these evolutionary changes are compensated post-transcriptionally to maintain preferred stoichiometry of protein synthesis rates. Even more strikingly, in eukaryotic budding yeast, functionally analogous proteins that arose independently from bacterial counterparts also evolved to convergent in-pathway expression. The broad requirement for exact protein stoichiometries despite regulatory divergence provides an unexpected principle for building biological pathways both in nature and for synthetic activities.
Date issued
2018-04
URI
https://hdl.handle.net/1721.1/125177
Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Physics
Journal
Cell
Publisher
Elsevier BV
Citation
Lalanne, Jean-Benoît et al. “Evolutionary Convergence of Pathway-Specific Enzyme Expression Stoichiometry.” Cell 173 (2018): 749-761.e38 © 2018 The Author(s)
Version: Author's final manuscript
ISSN
0092-8674

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.