MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Linear Response Framework for Radiative-Convective Instability

Author(s)
Beucler, Tom G.; Cronin, Timothy Wallace; Emanuel, Kerry Andrew
Thumbnail
DownloadPublished version (2.877Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Radiative-convective equilibrium is a simple paradigm for the tropical climate, in which radiative cooling balances convective heating in the absence of lateral energy transport. Recent studies have shown that a large-scale circulation may spontaneously develop from radiative-convective equilibrium through the interactions among water vapor, radiation, and convection. This potential instability, referred to as radiative-convective instability, may be posed as a linear stability problem for the water vapor profile by combining a linear response framework with the weak temperature gradient approximation. We design two analytic models of convective linear response to moisture perturbations, which are similar to Betts-Miller and bulk-plume convection schemes. We combine these convective responses with either clear-sky gray or real-gas radiative responses. In all cases, despite consistent radiative feedbacks, the characteristics of convection dominate the vertical structure of the most unstable linear mode of water vapor perturbations. For Betts-Miller convection, the stability critically depend on a key parameter: the heating to advection of moisture conversion rate (HAM); warmer atmospheres with higher HAM exhibit more linear instability. In contrast, bulk-plume convection is stable across temperatures but becomes linearly unstable with a moisture mode peaking in the midtroposphere once combined to radiation, with approximate growth rates of 10 days.
Date issued
2018-08
URI
https://hdl.handle.net/1721.1/125293
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Advances in Modelling Earth Systems
Publisher
American Geophysical Union (AGU)
Citation
Beucler, Tom, Timothy Cronin and Kerry Emanuel. “A Linear Response Framework for Radiative-Convective Instability.” 10 (2018): 1924-1951 © 2018 The Author(s)
Version: Final published version
ISSN
1942-2466

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.