Show simple item record

dc.contributor.authorDalca, Adrian Vasile
dc.contributor.authorGuttag, John V.
dc.contributor.authorSabuncu, Mert R.
dc.date.accessioned2020-05-20T15:43:51Z
dc.date.available2020-05-20T15:43:51Z
dc.date.issued2018-12
dc.identifier.isbn9781538664209
dc.identifier.isbn978-1-5386-6421-6
dc.identifier.issn2575-7075
dc.identifier.issn1063-6919
dc.identifier.urihttps://hdl.handle.net/1721.1/125346
dc.description.abstractWe consider the problem of segmenting a biomedical image into anatomical regions of interest. We specifically address the frequent scenario where we have no paired training data that contains images and their manual segmentations. Instead, we employ unpaired segmentation images that we use to build an anatomical prior. Critically these segmentations can be derived from imaging data from a different dataset and imaging modality than the current task. We introduce a generative probabilistic model that employs the learned prior through a convolutional neural network to compute segmentations in an unsupervised setting. We conducted an empirical analysis of the proposed approach in the context of structural brain MRI segmentation, using a multi-study dataset of more than 14,000 scans. Our results show that an anatomical prior enables fast unsupervised segmentation which is typically not possible using standard convolutional networks. The integration of anatomical priors can facilitate CNN-based anatomical segmentation in a range of novel clinical problems, where few or no annotations are available and thus standard networks are not trainable. The code, model definitions and model weights are freely available at http://github.com/adalca/neuron. Keywords: Image segmentation; Biological system modeling; Biomedical imaging; Convolutional neural networks; Shape; Computational modeling; Decoding.en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/cvpr.2018.00968en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleAnatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentationen_US
dc.typeArticleen_US
dc.identifier.citationDalca, Adrian V., Guttag, John and Sabuncu, Mert R., "Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation." IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18-23 June 2018. Salt Lake City, UT, IEEE, 2018en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journal2018 IEEE/CVF Conference on Computer Vision and Pattern Recognitionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-05-30T14:55:59Z
dspace.date.submission2019-05-30T14:56:00Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record