Show simple item record

dc.contributor.authorBiamonte, Jacob D.
dc.contributor.authorMorales, Mauro E. S.
dc.contributor.authorKoh, Dax Enshan
dc.date.accessioned2020-05-21T20:20:00Z
dc.date.available2020-05-21T20:20:00Z
dc.date.issued2020-01
dc.date.submitted2019-08
dc.identifier.issn2469-9926
dc.identifier.issn2469-9934
dc.identifier.urihttps://hdl.handle.net/1721.1/125396
dc.description.abstractA contemporary technological milestone is to build a quantum device performing a computational task beyond the capability of any classical computer, an achievement known as quantum adversarial advantage. In what ways can the entanglement realized in such a demonstration be quantified? Inspired by the area law of tensor networks, we derive an upper bound for the minimum random circuit depth needed to generate the maximal bipartite entanglement correlations between all problem variables (qubits). This bound is lattice geometry dependent and makes explicit a nuance implicit in other proposals with physical consequence. The hardware itself should be able to support superlogarithmic ebits of entanglement across some poly(n) number of qubit bipartitions; otherwise the quantum state itself will not possess volumetric entanglement scaling and full-lattice-range correlations. Hence, as we present a connection between quantum advantage protocols and quantum entanglement, the entanglement implicitly generated by such protocols can be tested separately to further ascertain the validity of any quantum advantage claim.en_US
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.101.012349en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleEntanglement scaling in quantum advantage benchmarksen_US
dc.typeArticleen_US
dc.identifier.citationBiamonte, Jacob D., Mauro E. S. Morales, and Dax Enshan Koh. "Entanglement scaling in quantum advantage benchmarks." Physical Review A, 101, 1 (January 2020): 012349. © 2020 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-01-31T15:41:08Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.date.submission2020-01-31T15:41:08Z
mit.journal.volume101en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record