MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measurement of Magnetic Field Properties of a 3.0 T/m Air-core HTS Quadrupole Magnet and Optimal Shape Design to Increase the Critical Current Reduced by the Incident Magnetic Field

Author(s)
Choi, Yojong; Kim, Junseong; Baek, Geonwoo; Han, Seunghak; Lee, Seung Woo; Ko, Tae Kuk; ... Show more Show less
Thumbnail
Downloadelectronics-09-00450.pdf (5.587Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Air-core high-temperature superconducting quadrupole magnets (AHQMs) differ from conventional iron-core quadrupole magnets, in that their iron cores are removed, and instead high-temperature superconductors (HTSs) are applied. The high operating temperature and high thermal stability of HTS magnets can improve their thermodynamic cooling efficiency. Thus, HTS magnets are more suitable than low temperature superconducting magnets for withstanding radiation and high heat loads in the hot cells of accelerators. AHQMs are advantageous because they are compact, light, and free from the hysteresis of ferromagnetic materials, due to the removal of the iron-core. To verify the feasibility of the use of AHQMs, we designed and fabricated a 3.0 T/m AHQM. The magnetic field properties of the fabricated AHQM were evaluated. Additionally, the characteristics of the air-core model and iron-core model of 9.0 T/m were compared in the scale for practical operation. In comparison with the iron-core model, AHQM significantly reduces the critical current (I[subscript C]) due to the strong magnetic field inside the coil. In this study, a method for the accurate calculation of I[subscript C] is introduced, and the calculated results are compared with measured results. Furthermore, the optimal shape design of the AHQM to increase the critical current is introduced. Keywords: air-core quadrupole magnet; critical current degradation; heavy-lon accelerator; high-temperature superconductor; iron-core quadrupole magnet; optimum shape design
Date issued
2020-03
URI
https://hdl.handle.net/1721.1/125418
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center; Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
Journal
Electronics
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Choi, Yojong, et al. "Measurement of Magnetic Field Properties of a 3.0 T/m Air-Core HTS Quadrupole Magnet and Optimal Shape Design to Increase the Critical Current Reduced by the Incident Magnetic Field ." Electronics, 9 (March 2020), 450. © 2020 The Author(s)
Version: Final published version
ISSN
2079-9292

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.