MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Amplitude dynamics of the charge density wave in LaTe[subscript 3]: Theoretical description of pump-probe experiments

Author(s)
Dolgirev, Pavel E.; Rozhkov, A. V.; Zong, Alfred; Kogar, Anshul; Gedik, Nuh; Fine, Boris V.; ... Show more Show less
Thumbnail
DownloadPhysRevB.101.054203.pdf (1.576Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We formulate a dynamical model to describe a photoinduced charge density wave (CDW) quench transition and apply it to recent multiprobe experiments on LaTe[subscript 3] [A. Zong et al., Nat. Phys. 15, 27 (2019)1745-247310.1038/s41567-018-0311-9]. Our approach relies on coupled time-dependent Ginzburg-Landau equations tracking two order parameters that represent the modulations of the electronic density and the ionic positions. We aim at describing the amplitude of the order parameters under the assumption that they are homogeneous in space. This description is supplemented by a three-temperature model, which treats separately the electronic temperature, temperature of the lattice phonons with stronger couplings to the electronic subsystem, and temperature of all other phonons. The broad scope of available data for LaTe[subscript 3] and similar materials as well as the synergy between different time-resolved spectroscopies allow us to extract model parameters. The resulting calculations are in good agreement with ultrafast electron diffraction experiments, reproducing qualitative and quantitative features of the CDW amplitude evolution during the initial few picoseconds after photoexcitation. Keywords: Charge density waves; Nonequilibrium systesm; Pump-probe spectroscopy; Time-dependent Ginzburg-Landau theory
Date issued
2020-02
URI
https://hdl.handle.net/1721.1/125434
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Dolgirev, Pavel E., et al. "Amplitude dynamics of the charge density wave in LaTe3: Theoretical description of pump-probe experiments." Physical Review B, 101, 5 (February 2020): 054203. ©2020 American Physical Society
Version: Final published version
ISSN
2469-9969
2469-9950

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.