Show simple item record

dc.contributor.authorLusztig, George
dc.date.accessioned2020-05-27T17:51:16Z
dc.date.available2020-05-27T17:51:16Z
dc.date.issued2019-10
dc.identifier.issn1088-4165
dc.identifier.urihttps://hdl.handle.net/1721.1/125509
dc.description.abstractLet W be a Weyl group. In this paper we define a new basis for the Grothendieck group of representations of W. This basis contains on the one hand the special representations of W and on the other hand the representations of W carried by the left cells of W. We show that the representations in the new basis have a certain bipositivity property.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1566618)en_US
dc.language.isoen
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionofhttps://dx.doi.org/10.1090/ERT/534en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleA new basis for the representation ring of a Weyl groupen_US
dc.typeArticleen_US
dc.identifier.citationLusztig, G. “A new basis for the representation ring of a Weyl group.” Representation Theory 23 (2019): 439-461 © 2019 The Authoren_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalRepresentation Theoryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-04-03T14:59:42Z
dspace.date.submission2020-04-03T14:59:46Z
mit.journal.volume23en_US
mit.journal.issue14en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record