Minimum-strain symmetrization of Bravais lattices
Author(s)
Larsen, Peter Mahler; Pang, Edward L.; Parrilo, Pablo A.; Jacobsen, Karsten W.
DownloadPhysRevResearch.2.013077.pdf (2.368Mb)
Terms of use
Metadata
Show full item recordAbstract
Bravais lattices are the most fundamental building blocks of crystallography. They are classified into groups according to their translational, rotational, and inversion symmetries. In computational analysis of Bravais lattices, fulfillment of symmetry conditions is usually determined by analysis of the metric tensor, using either a numerical tolerance to produce a binary (i.e., yes or no) classification or a distance function which quantifies the deviation from an ideal lattice type. The metric tensor, though, is not scale invariant, which complicates the choice of threshold and the interpretation of the distance function. Here, we quantify the distance of a lattice from a target Bravais class using strain. For an arbitrary lattice, we find the minimum-strain transformation needed to fulfill the symmetry conditions of a desired Bravais lattice type; the norm of the strain tensor is used to quantify the degree of symmetry breaking. The resulting distance is invariant to scale and rotation, and is a physically intuitive quantity. By symmetrizing to all Bravais classes, each lattice can be placed in a 14-dimensional space, which we use to create a map of the space of Bravais lattices and the transformation paths between them. A software implementation is available online under a permissive license.
Date issued
2020-01Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Physical Review Research
Publisher
American Physical Society (APS)
Citation
Larsen, Peter M., et al. "Minimum-strain symmetrization of Bravais lattices." Physical Review Research, 2, 1 (January 2020): 013077.
Version: Final published version
ISSN
2643-1564
Collections
The following license files are associated with this item: