MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path

Author(s)
Abi Akl, Rami; Abeyaratne, Rohan; Cohen, Tal
Thumbnail
DownloadSubmitted version (998.7Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Surface growth by association or dissociation of material on the boundary of a body is ubiquitous in both natural and engineering systems. It is the fundamental mechanism by which biological materials grow, starting from the level of a single cell, and is increasingly applied in engineering processes for fabrication and self-assembly. A significant challenge in modelling such processes arises due to the inherent coupled interaction between the growth kinetics, the local stresses and the diffusing constituents needed to sustain the growth. Moreover, the volume of the body changes not only due to surface growth but also by variation in solvent concentration within the bulk. In this paper, we present a general theoretical framework that captures these phenomena and describes the kinetics of surface growth while accounting for coupled diffusion. Then, by the combination of analytical and numerical tools, applied to a simple growth geometry, we show that the evolution of such growth processes tends towards a universal path that is independent of initial conditions. This path, on which surface growth and diffusion act harmoniously, can be extended to analytically portray the evolution of a body from inception up to a treadmilling state, in which addition and removal of material are balanced.
Date issued
2019-01
URI
https://hdl.handle.net/1721.1/125527
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Publisher
The Royal Society
Citation
Rami Abi-Akl, Rohan Abeyaratne and Tal Cohen. "Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path." Proceedings of the Royal Society A 2019 475: 20180465.
Version: Original manuscript
ISSN
1364-5021
1471-2946

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.