MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-resolution biomass burning aerosol transport simulations in the tropics

Author(s)
Nurzahziani; Surussavadee, Chinnawat; Noosook, Thanchanok
Thumbnail
Downloadatmosphere-11-00091-v2.pdf (9.786Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
This study evaluates the performance of the Weather Research and Forecasting Model with Chemistry (WRF-Chem) for simulating biomass burning aerosol transport at high resolution in the tropics using two different biomass burning emission inventories. Hourly, daily, and monthly average PM10 dry mass concentrations at 5 km resolution—simulated separately using the Brazilian Biomass Burning Emission Model (WRF-3BEM) and the Fire Inventory from NCAR (WRF-FINN) and their averages (WRF-AVG) for 3 months from February to April—are evaluated, using measurements from ground stations distributed in northern Thailand for 2014 and 2015. Results show that WRF-3BEM agrees well with observations and performs much better than WRF-FINN and WRF-AVG. WRF-3BEM simulations are almost unbiased, while those of WRF-FINN and WRF-AVG are significantly overestimated due to significant overestimates of FINN emissions. WRF-3BEM and the measured monthly average PM10 concentrations for all stations and both years are 89.22 and 87.20 μg m−3, respectively. The root mean squared error of WRF-3BEM simulated monthly average PM10 concentrations is 72.00 and 47.01% less than those of WRF-FINN and WRF-AVG, respectively. The correlation coefficient of WRF-3BEM simulated monthly PM10 concentrations and measurements is 0.89. WRF-3BEM can provide useful biomass burning aerosol transport simulations for the northern region of Thailand. Keywords: air quality modeling; biomass burning emissions; biomass burning aerosol transport simulation; northern region of Thailand; PM10 concentration; smoke haze episode
Date issued
2020-01-12
URI
https://hdl.handle.net/1721.1/125554
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Atmosphere
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Nurzahziani, Chinnawat Surussavadee, and Thanchanok Noosook, "High-resolution biomass burning aerosol transport simulations in the tropics." Atmosphere 11, 1 (Jan. 2020): no. 91 doi 10.3390/atmos11010091 ©2020 Author(s)
Version: Final published version
ISSN
2073-4433

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.