MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theoretical Bounds on Electron Energy Filtering in Disordered Nanomaterials

Author(s)
Dodin, Amro; Aull, Brian F.; Kunz, Roderick R; Willard, Adam P.
Thumbnail
DownloadSubmitted version (675.7Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Electron energy filters have recently been proposed as a method of reducing the effects of thermal broadening in device and sensing applications, enabling substantial improvements in their room temperature performance. Nanostructured materials can act as electron energy filters by funneling thermally broadened electrons through discrete energy levels. In this study, we develop a theoretical model of the electron filtering properties of nanostructured materials that explicitly includes the effects of thermal broadening and size heterogeneity on the heterogeneity of nanostructure energy levels. We find that under certain conditions quantum dot solids can perform as effective electronic energy filters. We identify a material-specific length scale parameter, Lcrit, that specifies the maximum mean quantum dot size that can yield effective energy filtering. Moreover, we show that energy filtering materials composed of quantum dots with size near Lcrit are maximally robust to heterogeneity in quantum dot size, tolerating variations ∼10% of the mean size. The length scale Lcrit can be estimated directly from the widely tabulated density of states effective mass and shows that semiconductors with light conduction band electrons, such as III-V type materials InSb and GaAs, are the most forgiving for energy filtering applications. Taken together, these results provide a practical set of quantitative design principles for semiconductor electron filters.
Date issued
2019-10
URI
https://hdl.handle.net/1721.1/125594
Department
Massachusetts Institute of Technology. Department of Chemistry; Lincoln Laboratory
Journal
Nano letters
Publisher
American Chemical Society (ACS)
Citation
Dodin, Amro et al. “Theoretical Bounds on Electron Energy Filtering in Disordered Nanomaterials.” Nano letters 19 (2019): 8441-8446.
Version: Original manuscript
ISSN
1530-6984

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.