MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A High-Throughput Assay for Collagen Secretion Suggests an Unanticipated Role for Hsp90 in Collagen Production

Author(s)
Wong, Madeline Y.; Doan, Ngoc Duc; DiChiara, Andrew Stephen; Papa, Louis John; Cheah, Jaime H; Soule, Christian K.; Watson, Nicki E.; Shoulders, Matthew D.; ... Show more Show less
Thumbnail
DownloadAccepted version (2.392Mb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Collagen overproduction is a feature of fibrosis and cancer, while insufficient deposition of functional collagen molecules and/or the secretion of malformed collagen is common in genetic disorders like osteogenesis imperfecta. Collagen secretion is an appealing therapeutic target in these and other diseases, as secretion directly connects intracellular biosynthesis to collagen deposition and biological function in the extracellular matrix. However, small molecule and biological methods to tune collagen secretion are severely lacking. Their discovery could prove useful not only in the treatment of disease, but also in providing tools for better elucidating mechanisms of collagen biosynthesis. We developed a cell-based, high-throughput luminescent assay of collagen type I secretion and used it to screen for small molecules that selectively enhance or inhibit that process. Among several validated hits, the Hsp90 inhibitor 17-allylaminogeldanamycin (17-AAG) robustly decreases the secretion of collagen-I by our model cell line and by human primary cells. In these systems, 17-AAG and other pan-isoform Hsp90 inhibitors reduce collagen-I secretion post-translationally and are not global inhibitors of protein secretion. Surprisingly, the consequences of Hsp90 inhibitors cannot be attributed to inhibition of the endoplasmic reticulum's Hsp90 isoform, Grp94. Instead, collagen-I secretion likely depends on the activity of cytosolic Hsp90 chaperones, even though such chaperones cannot directly engage nascent collagen molecules. Our results highlight the value of a cell-based high-throughput screen for selective modulators of collagen secretion and suggest an unanticipated role for cytosolic Hsp90 in collagen secretion.
Date issued
2018-05
URI
https://hdl.handle.net/1721.1/125610
Department
Massachusetts Institute of Technology. Department of Chemistry; Whitehead Institute for Biomedical Research; Koch Institute for Integrative Cancer Research at MIT
Journal
Biochemistry
Publisher
American Chemical Society (ACS)
Citation
Wong, Madeline Y. et al. “A High-Throughput Assay for Collagen Secretion Suggests an Unanticipated Role for Hsp90 in Collagen Production.” Biochemistry 57 (2018): 2814-2827 © 2018 The Author(s)
Version: Author's final manuscript
ISSN
0006-2960

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.