MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

System-Level Optimization of Multi-Modal Transportation Networks for Energy Efficiency using Personalized Incentives: Formulation, Implementation, and Performance

Author(s)
Sui, Yihang; Sukhin, David A.; Ben-Akiva, Moshe E
Thumbnail
DownloadAccepted version (1.576Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The paper presents the system optimization (SO) framework of Tripod, an integrated bi-level transportation management system aimed at maximizing energy savings of the multi-modal transportation system. From the user’s perspective, Tripod is a smartphone app, accessed before performing trips. The app proposes a series of alternatives, consisting of a combination of departure time, mode, and route. Each alternative is rewarded with an amount of tokens which the user can later redeem for goods or services. The role of SO is to compute the optimized set of tokens associated with the available alternatives to minimize the system-wide energy consumption under a limited token budget. To do so, the alternatives that guarantee the largest energy reduction must be rewarded with more tokens. SO is multi-modal, in that it considers private cars, public transit, walking, car pooling, and so forth. Moreover, it is dynamic, predictive, and personalized: the same alternative is rewarded differently, depending on the current and the predicted future condition of the network and on the individual profile. The paper presents a method to solve this complex optimization problem and describe the system architecture, the multi-modal simulation-based optimization model, and the heuristic method for the online computation of the optimized token allocation. Finally it showcases the framework with simulation results.
Date issued
2019-07
URI
https://hdl.handle.net/1721.1/125658
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Transportation Research Record
Publisher
SAGE Publications
Citation
Araldo, Andrea et al. “System-Level Optimization of Multi-Modal Transportation Networks for Energy Efficiency using Personalized Incentives: Formulation, Implementation, and Performance” Transportation Research Record, vol. 2673, no. 12, 2019, pp. 425-438 © 2019 The Author(s)
Version: Author's final manuscript
ISSN
0361-1981
2169-4052

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.