MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Operando Gas Monitoring of Solid Electrolyte Interphase Reactions on Lithium

Author(s)
Hobold, Gustavo M.; Khurram, Aliza
Thumbnail
DownloadPublished version (2.629Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Formation of stable solid electrolyte interphases (SEI) that protect Li against continuous electrolyte reduction is one of the remaining challenges to enable safe, secondary high-energy Li batteries with minimal capacity loss. However, SEI formation pathways remain difficult to experimentally pinpoint, even with the most well-known carbonate electrolytes and graphite anodes, and especially on Li. Using a custom electrochemical cell coupled to a gas chromatograph (GC), dynamic gas-phase signatures of interphase reactions during a first Li plating step in EC/DMC were monitored as a function of cell chemistry and operational parameters. The operando nature of these experiments allows distinction to be drawn between gases formed chemically by the reaction of metallic Li and electrolyte, vs those evolved electrochemically, i.e., through electron-transfer and reaction with Li+. Quantification of gas evolution molar ratios during cycling enables determination of specific interphase reactions and their branching ratios dominating active SEI formation. We find that SEI-repair mechanisms are sensitive to the choice of the electrolyte salt (LiPF6/LiClO4/LiTFSI), solvent fluorination, and current density. In particular, SEIs resulting from solvent decarbonylation and/or decarboxylation - leading to enhanced CO and/or CO2 evolution - are the most stable, providing a simple and descriptive gas-phase signature indicative of high Coulombic efficiencies of Li plating/stripping.
Date issued
2020-02
URI
https://hdl.handle.net/1721.1/125667
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Chemistry of Materials
Publisher
American Chemical Society (ACS)
Citation
Hobold, Gustavo M., Aliza Khurram and Betar M. Gallant. “Chemistry of Materials” Chemistry of Materials, vol. 32, no. 6, 2020, pp. 2341-2352 © 2020 The Author(s)
Version: Final published version
ISSN
0897-4756

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.