MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smoke radiocarbon measurements from Indonesian fires provide evidence for burning of millennia-aged peat

Author(s)
Wiggins, Elizabeth B.; Czimczik, Claudia I.; Santos, Guaciara M.; Chen, Yang; Xu, Xiaomei; Holden, Sandra R.; Randerson, James T.; Harvey, Charles F; Kai, Fuu Ming; Yu, Liya E.; ... Show more Show less
Thumbnail
DownloadPublished version (1.170Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In response to a strong El Niño, fires in Indonesia during September and October 2015 released a large amount of carbon dioxide and created a massive regional smoke cloud that severely degraded air quality in many urban centers across Southeast Asia. Although several lines of evidence indicate that peat burning was a dominant contributor to emissions in the region, El Niño-induced drought is also known to increase deforestation fires and agricultural waste burning in plantations. As a result, uncertainties remain with respect to partitioning emissions among different ecosystem and fire types. Here we measured the radiocarbon content ([superscript 14]C) of carbonaceous aerosol samples collected in Singapore from September 2014 through October 2015, with the aim of identifying the age and origin of fire-emitted fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm). The Δ[superscript 14]C of fire-emitted aerosol was −76 ± 51, corresponding to a carbon pool of combusted organic matter with a mean turnover time of 800 ± 420 y. Our observations indicated that smoke plumes reaching Singapore originated primarily from peat burning (∼85%), and not from deforestation fires or waste burning. Atmospheric transport modeling confirmed that fires in Sumatra and Borneo were dominant contributors to elevated PM2.5 in Singapore during the fire season. The mean age of the carbonaceous aerosol, which predates the Industrial Revolution, highlights the importance of improving peatland fire management during future El Niño events for meeting climate mitigation and air quality commitments.
Date issued
2018-11
URI
https://hdl.handle.net/1721.1/125687
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
Proceedings of the National Academy of Sciences
Citation
Wiggins, Elizabeth B. et al. “Smoke Radiocarbon Measurements from Indonesian Fires Provide Evidence for Burning of Millennia-Aged Peat.” Proceedings of the National Academy of Sciences 115, 49 (December 2018): 12419–24. © 2018 the Authors
Version: Final published version
ISSN
1091-6490
0027-8424

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.