MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact of Vegetation‐Generated Turbulence on the Critical, Near‐Bed, Wave‐Velocity for Sediment Resuspension

Author(s)
Tang, Caihong; Lei, Jiarui; Nepf, Heidi
Thumbnail
DownloadPublished version (877.9Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Laboratory experiments examined the impact of model vegetation on wave-driven resuspension. Model canopies were constructed from cylinders with three diameters (d = 0.32, 0.64, and 1.26 cm) and 12 densities (cylinders/m2) up to a solid volume fraction (ϕ) of 10%. The sediment bed consisted of spherical grains with d50 = 85 μm. For each experiment, the wave velocity was gradually adjusted by increasing the amplitude of 2-s waves in a stepwise fashion. A Nortek Vectrino sampled the velocity at z = 1.3 cm above the bed. The critical wave orbital velocity for resuspension was inferred from records of suspended sediment concentration (measured with optical backscatter) as a function of wave velocity. The critical wave velocity decreased with increasing solid volume fraction. The reduction in critical wave velocity was linked to stem-generated turbulence, which, for the same wave velocity, increased with increasing solid volume fraction. The measured turbulence was consistent with a wave-modified version of a stem-turbulence model. The measurements suggested that a critical value of turbulent kinetic energy was needed to initiate resuspension, and this was used to define the critical wave velocity as a function of solid volume fraction. The model predicted the measured critical wave velocity for stem diameters d = 0.64 to 2 cm. Combining the critical wave velocity with an existing model for wave damping defined the meadow size for which wave damping would be sufficient to suppress wave-induced sediment suspension within the interior of the meadow.
Date issued
2019-07
URI
https://hdl.handle.net/1721.1/125766
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Water Resources Research
Publisher
American Geophysical Union (AGU)
Citation
Tang, Caihong et al. "Impact of Vegetation‐Generated Turbulence on the Critical, Near‐Bed, Wave‐Velocity for Sediment Resuspension." Water Resources Research 55, 7 (July 2019): 5904-5917 © 2019 American Geophysical Union
Version: Final published version
ISSN
0043-1397
1944-7973

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.