Show simple item record

dc.contributor.authorZhou, Bolei
dc.contributor.authorZhao, Hang
dc.contributor.authorPuig Fernandez, Xavier
dc.contributor.authorXiao, Tete
dc.contributor.authorFidler, Sanja
dc.contributor.authorBarriuso, Adela
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2020-06-11T20:32:21Z
dc.date.available2020-06-11T20:32:21Z
dc.date.issued2018-12
dc.date.submitted2018-03
dc.identifier.issn1573-1405
dc.identifier.issn0920-5691
dc.identifier.urihttps://hdl.handle.net/1721.1/125771
dc.description.abstractSemantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation. We provide baseline performances on both of the benchmarks and re-implement state-of-the-art models for open source. We further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of scenes and objects.en_US
dc.description.sponsorshipNSF (grant 1524817)en_US
dc.language.isoen
dc.publisherSpringer Natureen_US
dc.relation.isversionof10.1007/S11263-018-1140-0en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSemantic Understanding of Scenes Through the ADE20K Dataseten_US
dc.typeArticleen_US
dc.identifier.citationZhou, Bolei, et al. "Semantic Understanding of Scenes Through the ADE20K Dataset." International Journal of Computer Vision 127 (2019): 302–321. https://doi.org/10.1007/s11263-018-1140-0 © 2018 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalInternational Journal of Computer Visionen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-07-11T17:39:30Z
dspace.date.submission2019-07-11T17:39:31Z
mit.journal.volume127en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record