MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Atomistic Simulation of a Thermoplastic Polyurethane and Micromechanical Modeling

Author(s)
Lempesis, Nikolaos; in ‘t Veld, Pieter J.; Rutledge, Gregory C
Thumbnail
DownloadAccepted version (11.28Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Thermoplastic polyurethanes constitute a versatile family of materials with a broad variety of engineering applications. However, connection between their chemical structure and mechanical properties remains elusive, in large part due to their heterogeneous nature, arising from segregation of chemically distinct segments into separate domains, with resulting complex morphologies. Using atomistic simulations, we examine the structure and mechanical properties of a common family of thermoplastic polyurethanes (TPU) comprising 4,4′-diphenylmethane diisocyanate and n-butanediol (hard segment) and poly(tetramethylene oxide) (soft segment). A lamellar stack model previously developed for the study of semicrystalline polymers is applied here for the first time to a phase-segregated copolymer. Equilibrium structure and properties were evaluated for TPUs with different ratios of hard and soft components, using a combination of Monte Carlo and molecular dynamics simulations. Stress-strain behaviors were then evaluated using nonequilibrium molecular dynamics (NEMD) simulations. The compositional dependence of the Young's moduli thus obtained is shown to be well-approximated by a micromechanical homogenization model of the hard and soft components. Voigt (upper) and Reuss (lower) bounds of modulus were obtained for orientationally averaged aggregates and shown to be greater than those measured experimentally. The discrepancy is explained in terms of the strain rate dependence of elastic moduli, characterized by an Eyring-like function.
Date issued
2017-09
URI
https://hdl.handle.net/1721.1/125804
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Macromolecules
Publisher
American Chemical Society (ACS)
Citation
Lempesis, Nikolaos et al. "Atomistic Simulation of a Thermoplastic Polyurethane and Micromechanical Modeling." Macromolecules 50, 18 (September 2017): 7399–7409 © 2017 American Chemical Society
Version: Author's final manuscript
ISSN
0024-9297
1520-5835

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.