Show simple item record

dc.contributor.authorIuga, D.
dc.contributor.authorRossi, P.
dc.contributor.authorHerzfeld, J.
dc.contributor.authorGriffin, Robert Guy
dc.date.accessioned2020-06-17T14:46:15Z
dc.date.available2020-06-17T14:46:15Z
dc.date.issued2017-04
dc.date.submitted2016-12
dc.identifier.issn0926-2040
dc.identifier.urihttps://hdl.handle.net/1721.1/125835
dc.description.abstractChloride ions play important roles in many chemical and biological processes. This paper investigates the possibility of localizing ³⁵Cl nuclei using solid-state NMR. It demonstrates that distances shorter than 3.8 Å, between ¹³C atoms and ³⁵Cl atoms in 10% uniformly labeled ¹³C L-tyrosine·HCl and natural abundance Glycine·HCl can be measured using rotational-echo (adiabatic passage) double-resonance (RE(AP)DOR). Furthermore the effect of quadrupolar interaction on the REDOR/REAPDOR experiment is quantified. The dephasing curve is plotted in a three dimensional chart as a function of the dephasing time and of the strength of quadrupolar interaction felt by each orientation. During spinning each orientation feels a quadrupolar interaction that varies in time, and therefore at each moment in time we reorder the crystallite orientations as a function of their contribution to the dephasing curve. In this way the effect of quadrupolar interaction on the dipolar dephasing curve can be fitted with a polynomial function. The numerical investigation performed allows us to generate REDOR/REAPDOR curves which are then used to simulate the experimental data.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ssnmr.2017.01.003en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleLocalization of Cl-35 nuclei in biological solids using rotational-echo double-resonance experimentsen_US
dc.typeArticleen_US
dc.identifier.citationIuga, D. et al. "Localization of Cl-35 nuclei in biological solids using rotational-echo double-resonance experiments." Solid State Nuclear Magnetic Resonance 82-83 (April 2017): 35-41 © 2017 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentFrancis Bitter Magnet Laboratory (Massachusetts Institute of Technology)en_US
dc.relation.journalSolid State Nuclear Magnetic Resonanceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-12-18T13:16:48Z
dspace.date.submission2019-12-18T13:16:51Z
mit.journal.volume82-83en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record