MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stable, small, specific, low-valency quantum dots for single-molecule imaging

Author(s)
Lee, Jungmin; Feng, Xinyi; Chen, Ou; Bawendi, Moungi G; Huang, Jun
Thumbnail
DownloadAccepted version (521.7Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We have developed a strategy for synthesizing immediately activable, water-soluble, compact (∼10–12 nm hydrodynamic diameter) quantum dots with a small number of stable and controllable conjugation handles for long distance delivery and subsequent biomolecule conjugation. Upon covalent conjugation with engineered monovalent streptavidin, the sample results in a population consisting of low-valency quantum dots. Alternatively, we have synthesized quantum dots with a small number of biotin molecules that can self-assemble with engineered divalent streptavidin via high-affinity biotin–streptavidin interactions. Being compact, stable and highly specific against biotinylated proteins of interest, these low-valency quantum dots are ideal for labeling and tracking single molecules on the cell surface with high spatiotemporal resolution for different biological systems and applications.
Date issued
2018-01
URI
https://hdl.handle.net/1721.1/125837
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Nanoscale
Publisher
Royal Society of Chemistry (RSC)
Citation
Lee, Jungmin et al. "Stable, small, specific, low-valency quantum dots for single-molecule imaging." Nanoscale 10, 9 (January 2018): 4406-4414
Version: Author's final manuscript
ISSN
2040-3364
2040-3372

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.