MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription

Author(s)
Struntz, Nicholas B.; Chen, Andrew I; Deutzmann, Anja; Wilson, Robert M.; Stefan, Eric; Evans, Helen L; Ramirez, Maricela A.; Liang, Tong; Caballero, Francisco; Wildschut, Mattheus H.E.; Neel, Dylan V; Freeman, David B.; Pop, Marius S; McConkey, Marie; Muller, Sandrine; Curtin, Brice Harrison; Tseng, Hanna; Frombach, Kristen R.; Butty, Vincent L G; Levine, Stuart S.; Feau, Clementine; Elmiligy, Sarah; Hong, Jiyoung A.; Lewis, Timothy A.; Vetere, Amedeo; Clemons, Paul A.; Malstrom, Scott E.; Ebert, Benjamin L.; Lin, Charles Y.; Felsher, Dean W.; Koehler, Angela Nicole; ... Show more Show less
Thumbnail
DownloadKoehler, A. (2019).zip (127.3Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Additional downloads
Manuscript_Final.pdf (562.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Supplemental Text and Figures_2-19-19.pdf (2.894Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The transcription factor Max is a basic-helix-loop-helix leucine zipper (bHLHLZ) protein that forms homodimers or interacts with other bHLHLZ proteins, including Myc and Mxd proteins. Among this dynamic network of interactions, the Myc/Max heterodimer has crucial roles in regulating normal cellular processes, but its transcriptional activity is deregulated in a majority of human cancers. Despite this significance, the arsenal of high-quality chemical probes to interrogate these proteins remains limited. We used small molecule microarrays to identify compounds that bind Max in a mechanistically unbiased manner. We discovered the asymmetric polycyclic lactam, KI-MS2-008, which stabilizes the Max homodimer while reducing Myc protein and Myc-regulated transcript levels. KI-MS2-008 also decreases viable cancer cell growth in a Myc-dependent manner and suppresses tumor growth in vivo. This approach demonstrates the feasibility of modulating Max with small molecules and supports altering Max dimerization as an alternative approach to targeting Myc.
Date issued
2019-05
URI
https://hdl.handle.net/1721.1/125846
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
Cell Chemical Biology
Publisher
Elsevier BV
Citation
Struntz, Nicholas B. et al. "Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription." Cell Chemical Biology 26, 5 (May 2019): P711-723.e14
Version: Author's final manuscript
ISSN
2451-9456

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.