MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Programmable and printable Bacillus subtilis biofilms as engineered living materials

Author(s)
Huang, Jiaofang; Lui, Suying; Zhang, Chen; Wang, Xinyu; Pu, Jiahua; Ba, Fang; Xie, Shuai; Ye, Haifeng; Zhao, Tianxin; Li, Ke; Wang, Yanyi; Zhang, Jicong; Wang, Lihua; Fan, Chunhai; Lu, Timothy K; Zhong, Chao; ... Show more Show less
Thumbnail
DownloadAccepted version (3.596Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Bacterial biofilms can be programmed to produce living materials with self-healing and evolvable functionalities. However, the wider use of artificial biofilms has been hindered by limitations on processability and functional protein secretion capacity. We describe a highly flexible and tunable living functional materials platform based on the TasA amyloid machinery of the bacterium Bacillus subtilis. We demonstrate that genetically programmable TasA fusion proteins harboring diverse functional proteins or domains can be secreted and can assemble into diverse extracellular nano-architectures with tunable physicochemical properties. Our engineered biofilms have the viscoelastic behaviors of hydrogels and can be precisely fabricated into microstructures having a diversity of three-dimensional (3D) shapes using 3D printing and microencapsulation techniques. Notably, these long-lasting and environmentally responsive fabricated living materials remain alive, self-regenerative, and functional. This new tunable platform offers previously unattainable properties for a variety of living functional materials having potential applications in biomaterials, biotechnology, and biomedicine.
Date issued
2019-01
URI
https://hdl.handle.net/1721.1/125850
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Nature Chemical Biology
Publisher
Springer Nature
Citation
Huang, Jiaofang, Suying Liu, Chen Zhang et al. "Programmable and printable Bacillus subtilis biofilms as engineered living materials." Nature Chemical Biology, 15 (2019):34-41. © 2018, The Author(s).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.