Show simple item record

dc.contributor.authorWhitaker, Kathryn A.
dc.contributor.authorVarga, Zsigmond
dc.contributor.authorHsiao, Lilian C.
dc.contributor.authorSolomon, Michael J.
dc.contributor.authorSwan, James W
dc.contributor.authorFurst, Eric M.
dc.date.accessioned2020-06-17T20:48:20Z
dc.date.available2020-06-17T20:48:20Z
dc.date.issued2019-05
dc.date.submitted2018-06
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/125858
dc.description.abstractColloidal gels formed by arrested phase separation are found widely in agriculture, biotechnology, and advanced manufacturing; yet, the emergence of elasticity and the nature of the arrested state in these abundant materials remains unresolved. Here, the quantitative agreement between integrated experimental, computational, and graph theoretic approaches are used to understand the arrested state and the origins of the gel elastic response. The micro-structural source of elasticity is identified by the l-balanced graph partition of the gels into minimally interconnected clusters that act as rigid, load bearing units. The number density of cluster-cluster connections grows with increasing attraction, and explains the emergence of elasticity in the network through the classic Cauchy-Born theory. Clusters are amorphous and iso-static. The internal cluster concentration maps onto the known attractive glass line of sticky colloids at low attraction strengths and extends it to higher strengths and lower particle volume fractions.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF CBET-1235955)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF CAREER Grant CBET-1554398)en_US
dc.description.sponsorshipPetroleum Research Fund (ACS-PRF Grant No. 56719-DN19)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttps://dx.doi.org/10.1038/s41467-019-10039-wen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleColloidal gel elasticity arises from the packing of locally glassy clustersen_US
dc.typeArticleen_US
dc.identifier.citationWhitaker, Kathryn A., Zsigmond Varga, Lilian C. Hsiao et al. "Colloidal gel elasticity arises from the packing of locally glassy clusters." Nature Communications 10, article number: 2237 (2019). © 2019, The Author(s).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-09-12T17:52:04Z
dspace.orderedauthorsWhitaker, Kathryn A.; Varga, Zsigmond; Hsiao, Lilian C.; Solomon, Michael J.; Swan, James W.; Furst, Eric M.en_US
dspace.date.submission2019-09-12T17:52:05Z
mit.journal.volume10en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record