Show simple item record

dc.contributor.authorVega-Brown, William R
dc.contributor.authorRoy, Nicholas
dc.date.accessioned2020-06-18T14:37:51Z
dc.date.available2020-06-18T14:37:51Z
dc.date.issued2018-07
dc.identifier.isbn9780999241127
dc.identifier.urihttps://hdl.handle.net/1721.1/125863
dc.description.abstractWe define an admissibility condition for abstractions expressed using angelic semantics and show that these conditions allow us to accelerate planning while preserving the ability to find the optimal motion plan. We then derive admissible abstractions for two motion planning domains with continuous state. We extract upper and lower bounds on the cost of concrete motion plans using local metric and topological properties of the problem domain. These bounds guide the search for a plan while maintaining performance guarantees. We show that abstraction can dramatically reduce the complexity of search relative to a direct motion planner. Using our abstractions, we find near-optimal motion plans in planning problems involving 1013 states without using a separate task planner.en_US
dc.language.isoen
dc.publisherInternational Joint Conferences on Artificial Intelligence Organizationen_US
dc.relation.isversionofhttp://dx.doi.org/10.24963/ijcai.2018/674en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleAdmissible Abstractions for Near-optimal Task and Motion Planningen_US
dc.typeArticleen_US
dc.identifier.citationVega-Brown, William and Nicholas Roy. "Admissible Abstractions for Near-optimal Task and Motion Planning." Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, July 2018, Stockholm, Sweden, International Joint Conferences on Artificial Intelligence Organization, July 2018 © 2018 International Joint Conferences on Artificial Intelligenceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalProceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-10-31T12:59:33Z
dspace.date.submission2019-10-31T12:59:47Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record