Show simple item record

dc.contributor.authorPrahl, Louis S.
dc.contributor.authorBangasser, Patrick F.
dc.contributor.authorStopfer, Lauren Elizabeth
dc.contributor.authorHemmat, Mahya
dc.contributor.authorWhite, Forest M.
dc.contributor.authorRosenfeld, Steven S.
dc.contributor.authorOdde, David J.
dc.date.accessioned2020-06-23T18:45:48Z
dc.date.available2020-06-23T18:45:48Z
dc.date.issued2018-11
dc.date.submitted2018-02
dc.identifier.issn2211-1247
dc.identifier.urihttps://hdl.handle.net/1721.1/125946
dc.description.abstractMicrotubule-targeting agents (MTAs) are widely used chemotherapy drugs capable of disrupting microtubule-dependent cellular functions, such as division and migration. We show that two clinically approved MTAs, paclitaxel and vinblastine, each suppress stiffness-sensitive migration and polarization characteristic of human glioma cells on compliant hydrogels. MTAs influence microtubule dynamics and cell traction forces by nearly opposite mechanisms, the latter of which can be explained by a combination of changes in myosin motor and adhesion clutch number. Our results support a microtubule-dependent signaling-based model for controlling traction forces through a motor-clutch mechanism, rather than microtubules directly relieving tension within F-actin and adhesions. Computational simulations of cell migration suggest that increasing protrusion number also impairs stiffness-sensitive migration, consistent with experimental MTA effects. These results provide a theoretical basis for the role of microtubules and mechanisms of MTAs in controlling cell migration. Prahl et al. examine the mechanisms by which microtubule-targeting drugs inhibit glioma cell migration. They find that dynamic microtubules regulate actin-based protrusion dynamics that facilitate cell polarity and migration. Changes in net microtubule assembly alter cell traction forces via signaling-based regulation of a motor-clutch system. ©2018 The Authorsen_US
dc.description.sponsorshipNSF grant (ACI-1053575)en_US
dc.description.sponsorship3M Science & Technology Doctoral Fellowshipen_US
dc.description.sponsorshipNSF Graduate Research Fellowship (00039202)en_US
dc.description.sponsorshipUniversity of Minnesota UROP awarden_US
dc.description.sponsorshipNIH training grant (T32 ES007020)en_US
dc.description.sponsorshipNIH grant (U54 CA210180)en_US
dc.description.sponsorshipNIH grant (R01 NS073610)en_US
dc.description.sponsorshipNIH grant (R01 CA172986 )en_US
dc.description.sponsorshipNIH grant (U54 CA 210190)en_US
dc.description.sponsorshipNIH grant (R01 GM076177)en_US
dc.publisherCell Pressen_US
dc.relation.isversionofhttps://dx.doi.org/10.1016/j.celrep.2018.10.101en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceElsevieren_US
dc.titleMicrotubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migrationen_US
dc.typeArticleen_US
dc.identifier.citationPrahl, Louis S., Patrick F. Bangasser, Lauren E. Stopfer, Mahya Hemmat, Forest M. White, Steven S. Rosenfeld, and David J. Odde. “Microtubule-Based Control of Motor-Clutch System Mechanics in Glioma Cell Migration.” Cell Reports 25, 9 (November 2018): p. 2591–2604.e8. doi. 10.1016/j.celrep.2018.10.101 ©2018 Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.relation.journalCell Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-02-28T13:16:47Z
dspace.orderedauthorsPrahl, Louis S.; Bangasser, Patrick F.; Stopfer, Lauren E.; Hemmat, Mahya; White, Forest M.; Rosenfeld, Steven S.; Odde, David J.en_US
dspace.embargo.termsNen_US
dspace.date.submission2019-04-04T12:27:21Z
mit.journal.volume25en_US
mit.journal.issue9en_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record