Targeting MUC1-C suppresses BCL2A1 in triple-negative breast cancer
Author(s)
Hiraki, Masayuki; Maeda, Takahiro; Mehrotra, Neha; Jin, Caining; Alam, Maroof; Bouillez, Audrey; Hata, Tsuyoshi; Tagde, Ashujit; Keating, Amy E.; Kharbanda, Surender; Singh, Harpal; Kufe, Donald; ... Show more Show less
DownloadPublished version (1.699Mb)
Terms of use
Metadata
Show full item recordAbstract
B-cell lymphoma 2-related protein A1 (BCL2A1) is a member of the BCL-2 family of anti-apoptotic proteins that confers resistance to treatment with anti-cancer drugs; however, there are presently no agents that target BCL2A1. The MUC1-C oncoprotein is aberrantly expressed in triple-negative breast cancer (TNBC) cells, induces the epithelial–mesenchymal transition (EMT) and promotes anti-cancer drug resistance. The present study demonstrates that targeting MUC1-C genetically and pharmacologically in TNBC cells results in the downregulation of BCL2A1 expression. The results show that MUC1-C activates the BCL2A1 gene by an NF-κB p65-mediated mechanism, linking this pathway with the induction of EMT. The MCL-1 anti-apoptotic protein is also of importance for the survival of TNBC cells and is an attractive target for drug development. We found that inhibiting MCL-1 with the highly specific MS1 peptide results in the activation of the MUC1-C→NF-κB→BCL2A1 pathway. In addition, selection of TNBC cells for resistance to ABT-737, which inhibits BCL-2, BCL-xL and BCL-W but not MCL-1 or BCL2A1, is associated with the upregulation of MUC1-C and BCL2A1 expression. Targeting MUC1-C in ABT-737-resistant TNBC cells suppresses BCL2A1 and induces death, which is of potential therapeutic importance. These findings indicate that MUC1-C is a target for the treatment of TNBCs unresponsive to agents that inhibit anti-apoptotic members of the BCL-2 family.
Date issued
2018-05Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Biological EngineeringJournal
Signal Transduction and Targeted Therapy
Publisher
Springer Science and Business Media LLC
Citation
Hiraki, Masayuki et al. "Targeting MUC1-C suppresses BCL2A1 in triple-negative breast cancer." Signal Transduction and Targeted Therapy 3, 1 (May 2018): 13 © 2018 The Author(s)
Version: Final published version
ISSN
2059-3635