Show simple item record

dc.contributor.authorGuo, Syuan-Ming
dc.contributor.authorVeneziano, Remi
dc.contributor.authorGordonov, Simon
dc.contributor.authorLi, Li
dc.contributor.authorDanielson, Eric W
dc.contributor.authorPerez de Arce, Karen
dc.contributor.authorPark, Demian
dc.contributor.authorKulesa, Anthony Benjamin
dc.contributor.authorWamhoff, Eike-Christian
dc.contributor.authorBlainey, Paul C.
dc.contributor.authorBlainey, Paul C
dc.contributor.authorBoyden, Edward
dc.contributor.authorCottrell, Jeffrey R.
dc.contributor.authorBathe, Mark
dc.date.accessioned2020-06-29T18:36:36Z
dc.date.available2020-06-29T18:36:36Z
dc.date.issued2019-09
dc.date.submitted2018-03
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/126016
dc.description.abstractSynapses contain hundreds of distinct proteins whose heterogeneous expression levels are determinants of synaptic plasticity and signal transmission relevant to a range of diseases. Here, we use diffusible nucleic acid imaging probes to profile neuronal synapses using multiplexed confocal and super-resolution microscopy. Confocal imaging is performed using high-affinity locked nucleic acid imaging probes that stably yet reversibly bind to oligonucleotides conjugated to antibodies and peptides. Super-resolution PAINT imaging of the same targets is performed using low-affinity DNA imaging probes to resolve nanometer-scale synaptic protein organization across nine distinct protein targets. Our approach enables the quantitative analysis of thousands of synapses in neuronal culture to identify putative synaptic sub-types and co-localization patterns from one dozen proteins. Application to characterize synaptic reorganization following neuronal activity blockade reveals coordinated upregulation of the post-synaptic proteins PSD-95, SHANK3 and Homer-1b/c, as well as increased correlation between synaptic markers in the active and synaptic vesicle zones.en_US
dc.description.sponsorshipNational Institutes of Health (Award 1U01MH106011)en_US
dc.description.sponsorshipNational Institutes of Health (Award R01-MH112694)en_US
dc.description.sponsorshipNational Science Foundation (Grant 1305537)en_US
dc.description.sponsorshipNational Science Foundation (Grant 1707999)en_US
dc.description.sponsorshipNational Institute of Environmental Health Sciences (Grant P30-ES002109)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-019-12372-6en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleMultiplexed and high-throughput neuronal fluorescence imaging with diffusible probesen_US
dc.typeArticleen_US
dc.identifier.citationGuo, Syuang-Ming et al. "Multiplexed and high-throughput neuronal fluorescence imaging with diffusible probes." Nature Communications 10, 4377 (September 2019): 4377 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Media Laboratoryen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-12-10T14:35:58Z
dspace.date.submission2019-12-10T14:36:01Z
mit.journal.volume10en_US
mit.journal.issue1en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record