Show simple item record

dc.contributor.authorMassner, Christoph
dc.contributor.authorErdmann, Philipp
dc.contributor.authorStelzl, Anja
dc.contributor.authorRolbieski, Hannes
dc.contributor.authorDesai, Mitul
dc.contributor.authorBricault, Sarah Jean
dc.contributor.authorWörner, Tobias P.
dc.contributor.authorSnijder, Joost
dc.contributor.authorGeerlof, Arie
dc.contributor.authorFuchs, Helmut
dc.contributor.authorde Angelis, Martin Hrabĕ
dc.contributor.authorHeck, Albert J.R.
dc.contributor.authorJasanoff, Alan Pradip
dc.contributor.authorNtziachristos, Vasilis
dc.contributor.authorPlitzko, Jürgen
dc.contributor.authorWestmeyer, Gil G.
dc.contributor.authorFritz, Sigmund
dc.date.accessioned2020-07-02T20:58:19Z
dc.date.available2020-07-02T20:58:19Z
dc.date.issued2018-05
dc.date.submitted2017-12
dc.identifier.urihttps://hdl.handle.net/1721.1/126054
dc.description.abstractWe genetically controlled compartmentalization in eukaryotic cells by heterologous expression of bacterial encapsulin shell and cargo proteins to engineer enclosed enzymatic reactions and size-constrained metal biomineralization. The shell protein (EncA) from Myxococcus xanthus auto-assembles into nanocompartments inside mammalian cells to which sets of native (EncB,C,D) and engineered cargo proteins self-target enabling localized bimolecular fluorescence and enzyme complementation. Encapsulation of the enzyme tyrosinase leads to the confinement of toxic melanin production for robust detection via multispectral optoacoustic tomography (MSOT). Co-expression of ferritin-like native cargo (EncB,C) results in efficient iron sequestration producing substantial contrast by magnetic resonance imaging (MRI) and allowing for magnetic cell sorting. The monodisperse, spherical, and iron-loading nanoshells are also excellent genetically encoded reporters for electron microscopy (EM). In general, eukaryotically expressed encapsulins enable cellular engineering of spatially confined multicomponent processes with versatile applications in multiscale molecular imaging, as well as intriguing implications for metabolic engineering and cellular therapy.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/S41467-018-04227-3en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleBacterial encapsulins as orthogonal compartments for mammalian cell engineeringen_US
dc.typeArticleen_US
dc.identifier.citationSigmund, Felix et al. "Bacterial encapsulins as orthogonal compartments for mammalian cell engineering." Nature Communications 9 (May 2018): 1990 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-03-11T17:15:45Z
dspace.date.submission2020-03-11T17:15:48Z
mit.journal.volume9en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record