MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The frequency-domain infrared spectrum of ammonia encodes changes in molecular dynamics caused by a DC electric field

Author(s)
Park, Youngwook; Kang, Hani; Field, Robert W; Kang, Heon
Thumbnail
DownloadPublished version (750.1Kb)
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Ammonia is special. It is nonplanar, yet in v = 1 of the umbrella mode (ν2) its inversion motion is faster than J = 0↔1 rotation. Does the simplicity of the Chemist’s concept of an electric dipole moment survive the competition between rotation, inversion, and a strong external electric field? NH3 is a favorite pedagogical example of tunneling in a symmetric double-minimum potential. Tunneling is a dynamical concept, yet the quantitative characteristics of tunneling are expressed in a static, eigenstate-resolved spectrum. The inverting-umbrella tunneling motion in ammonia is both large amplitude and profoundly affected by an external electric field. We report how a uniquely strong (up to 108 V/m) direct current (DC) electric field causes a richly detailed sequence of reversible changes in the frequency-domain infrared spectrum (the v = 0→1 transition in the ν2 umbrella mode) of ammonia, freely rotating in a 10 K Ar matrix. Although the spectrum is static, encoded in it is the complete inter- and intramolecular picture of tunneling dynamics.
Date issued
2019-11
URI
https://hdl.handle.net/1721.1/126151
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Proceedings of the National Academy of Science of the United States of America
Publisher
National Academy of Sciences
Citation
Park, Youngwook, et al. "The frequency-domain infrared spectrum of ammonia encodes changes in molecular dynamics caused by a DC electric field." Proceedings of the National Academy of Science of the United States of America 116, 47 (2019): p. 23444-47 doi 10.1073/pnas.1914432116 ©2019 Author(s)
Version: Final published version
ISSN
1091-6490

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.