MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multifunctional nanocomposite structural separators for energy storage

Author(s)
Acauan, Luiz Henrique H; Zhou, Yue; Kalfon-Cohen, Estelle; Fritz, Nathan K; Wardle, Brian L
Thumbnail
DownloadPublished version (4.636Mb)
Terms of use
Creative Commons Attribution Noncommercial 3.0 unported license https://creativecommons.org/licenses/by-nc/3.0/
Metadata
Show full item record
Abstract
Separators in energy storage devices such as batteries and supercapacitors are critical elements between the much-researched anodes and cathodes. Here we present a new “structural separator” comprised of electrically-insulating aligned alumina nanotubes, which realizes a structural, or mechanically robust, function in addition to allowing charge transfer. The polymer nanocomposite structural separator is demonstrated in a supercapacitor cell and also as an interface reinforcement in an aerospace-grade structural carbon fiber composite. Relative to a polymeric commercial separator, the structural separator shows advantages both electrically and structurally: ionic conductivity in the supercapacitor cell is doubled due to the nanotubes disrupting the semi-crystallinity in the polymer electrolyte, and the structural separator creates an interface that is 50% stronger in the advanced composite. In addition to providing direct benefits to existing energy storage devices, the structural separator is best suited to multifunctional structural energy storage applications.
Date issued
2019-12
URI
https://hdl.handle.net/1721.1/126153
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Nanoscale
Publisher
Royal Society of Chemistry (RSC)
Citation
Acauan, Luiz H., et al. "Multifunctional nanocomposite structural separators for energy storage." Nanoscale 45 (Dec. 2019): p. 21964-73 doi 10.1039/c9nr06954b ©2019 Author(s)
Version: Final published version
ISSN
2040-3372

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.