Show simple item record

dc.contributor.authorHolec, Patrick V
dc.contributor.authorBerleant, Joseph
dc.contributor.authorBathe, Mark
dc.contributor.authorBirnbaum, Michael E
dc.date.accessioned2020-07-13T17:58:43Z
dc.date.available2020-07-13T17:58:43Z
dc.date.issued2018-09
dc.date.submitted2018-08
dc.identifier.issn1367-4803
dc.identifier.issn1460-2059
dc.identifier.urihttps://hdl.handle.net/1721.1/126158
dc.description.abstractMotivation: The study of T cell receptor (TCR) repertoires has generated new insights into immune system recognition. However, the ability to robustly characterize these populations has been limited by technical barriers and an inability to reliably infer heterodimeric chain pairings for TCRs. Results: Here, we describe a novel analytical approach to an emerging immune repertoire sequencing method, improving the resolving power of this low-cost technology. This method relies upon the distribution of a T cell population across a 96-well plate, followed by barcoding and sequencing of the relevant transcripts from each T cell. Multicell Analytical Deconvolution for High Yield Paired-chain Evaluation (MAD-HYPE) uses Bayesian inference to more accurately extract TCR information, improving our ability to study and characterize T cell populations for immunology and immunotherapy applications. Availability and implementation: The MAD-HYPE algorithm is released as an open-source project under the Apache License and is available from https://github.com/birnbaumlab/MAD-HYPE.en_US
dc.description.sponsorshipNational Science Foundation (Grant PHY-1305537)en_US
dc.description.sponsorshipNational Science Foundation (Grant PHY-1707999)en_US
dc.description.sponsorshipNational Institutes of Health (Grant P30-CA14051)en_US
dc.language.isoen
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/bioinformatics/bty801en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Birnbaum via Howard Silveren_US
dc.titleA Bayesian framework for high-throughput T cell receptor pairingen_US
dc.typeArticleen_US
dc.identifier.citationHolec, Patrick V et al. "A Bayesian framework for high-throughput T cell receptor pairing." Bioinformatics 35, 8 (September 2018): 1318–1325 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.relation.journalBioinformaticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-07-09T13:58:48Z
dspace.date.submission2020-07-09T13:58:55Z
mit.journal.volume35en_US
mit.journal.issue8en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record