Show simple item record

dc.contributor.authorLovász, László Miklós
dc.contributor.authorZhao, Yufei
dc.date.accessioned2020-07-14T15:18:41Z
dc.date.available2020-07-14T15:18:41Z
dc.date.issued2019-09
dc.identifier.issn0963-5483
dc.identifier.urihttps://hdl.handle.net/1721.1/126175
dc.description.abstractWe provide a deterministic algorithm that finds, in ϵ-O(1) n 2 time, an ϵ-regular Frieze-Kannan partition of a graph on n vertices. The algorithm outputs an approximation of a given graph as a weighted sum of ϵ-O(1) many complete bipartite graphs. As a corollary, we give a deterministic algorithm for estimating the number of copies of H in an n-vertex graph G up to an additive error of at most ϵn v(H), in time ϵ-O H(1) n 2en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Postdoctoral Fellowship (Award DMS 1705204)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award DMS 1362326)en_US
dc.language.isoen
dc.publisherCambridge University Press (CUP)en_US
dc.relation.isversionof10.1017/S0963548319000075en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA fast new algorithm for weak graph regularityen_US
dc.typeArticleen_US
dc.identifier.citationFox, Jacob, László Miklós Lovász and Yufei Zhao. “A fast new algorithm for weak graph regularity.” Combinatorics, probability & computing, vol. 28, no. 5, 2019, pp. 777-790 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalCombinatorics, probability & computingen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-24T15:57:49Z
dspace.date.submission2019-11-24T15:57:51Z
mit.journal.volume28en_US
mit.journal.issue5en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record