Show simple item record

dc.contributor.authorSah, Ashwin
dc.contributor.authorSawhney, Mehtaab
dc.contributor.authorZhao, Yufei
dc.date.accessioned2020-07-14T16:02:58Z
dc.date.available2020-07-14T16:02:58Z
dc.date.issued2019-09
dc.date.submitted2018-06
dc.identifier.issn0095-8956
dc.identifier.urihttps://hdl.handle.net/1721.1/126178
dc.description.abstractSettling Kahn's conjecture (2001), we prove the following upper bound on the number i(G) of independent sets in a graph G without isolated vertices: i(G)≤∏uv∈E(G)i(Kdu,dv)1/(dudv), where du is the degree of vertex u in G. Equality occurs when G is a disjoint union of complete bipartite graphs. The inequality was previously proved for regular graphs by Kahn and Zhao. We also prove an analogous tight lower bound: i(G)≥∏v∈V(G)i(Kdv+1)1/(dv+1), where equality occurs for G a disjoint union of cliques. More generally, we prove bounds on the weighted versions of these quantities, i.e., the independent set polynomial, or equivalently the partition function of the hard-core model with a given fugacity on a graph.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award DMS-1362326)en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.JCTB.2019.01.007en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleThe number of independent sets in an irregular graphen_US
dc.typeArticleen_US
dc.identifier.citationSah, Ashwin et al. “The number of independent sets in an irregular graph.” Journal of combinatorial theory. Series B, vol. 138, 2019, pp. 172-195 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalJournal of combinatorial theory. Series Ben_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-24T15:54:40Z
dspace.date.submission2019-11-24T15:54:42Z
mit.journal.volume138en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record