Show simple item record

dc.contributor.authorYun, Zhiwei
dc.contributor.authorZhang, Wei
dc.date.accessioned2020-07-14T17:14:53Z
dc.date.available2020-07-14T17:14:53Z
dc.date.issued2020-06
dc.identifier.issn0003-486X
dc.identifier.urihttps://hdl.handle.net/1721.1/126180
dc.description.abstractFor arithmetic applications, we extend and refine our previously published results to allow ramifications in a minimal way. Starting with a possibly ramified quadratic extension F'/F of function fields over a finite field in odd characteristic, and a finite set of places Σ of F that are unramified in F', we define a collection of Heegner-Drinfeld cycles on the moduli stack of PGL 2 -Shtukas with r-modifications and Iwahori level structures at places of Σ. For a cuspidal automorphic representation π of PGL 2 (AF) with square-free level Σ, and r∈Z≥0 whose parity matches the root number of πF', we prove a series of identities between (1) the product of the central derivatives of the normalized L-functions L (a) (π, 1/2)L (r-a) (π⊗η,1/2), where η is the quadratic idèle class character attached to F'/F, and 0≤a≤r; (2) the self intersection number of a linear combination of Heegner-Drinfeld cycles. In particular, we can now obtain global L-functions with odd vanishing orders. These identities are function-field analogues of the formulae of Waldspurger and Gross-Zagier for higher derivatives of L-functions.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS 1302071/1736600)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-1601144)en_US
dc.language.isoen
dc.publisherAnnals of Mathematics, Princeton Uen_US
dc.relation.isversionof10.4007/annals.2019.189.2.2en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleShtukas and the Taylor expansion of L-functions (II)en_US
dc.typeArticleen_US
dc.identifier.citationYun, Zhiwei and Wei Zhang. “Shtukas and the Taylor expansion of L-functions (II).” Annals of mathematics, vol. 189, no. 2, 2019, pp. 393-526 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalAnnals of mathematicsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-11-24T15:45:58Z
dspace.date.submission2019-11-24T15:46:00Z
mit.journal.volume189en_US
mit.journal.issue2en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record