MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computing parametrized solutions for plasmonic nanogap structures

Author(s)
Vidal-Codina, Ferran; Nguyen, Ngoc Cuong; Peraire, Jaime
Thumbnail
DownloadAccepted version (3.326Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
The interaction of electromagnetic waves with metallic nanostructures generates resonant oscillations of the conduction-band electrons at the metal surface. These resonances can lead to large enhancements of the incident field and to the confinement of light to small regions, typically several orders of magnitude smaller than the incident wavelength. The accurate prediction of these resonances entails several challenges. Small geometric variations in the plasmonic structure may lead to large variations in the electromagnetic field responses. Furthermore, the material parameters that characterize the optical behavior of metals at the nanoscale need to be determined experimentally and are consequently subject to measurement errors. It then becomes essential that any predictive tool for the simulation and design of plasmonic structures accounts for fabrication tolerances and measurement uncertainties. In this paper, we develop a reduced order modeling framework that is capable of real-time accurate electromagnetic responses of plasmonic nanogap structures for a wide range of geometry and material parameters. The main ingredients of the proposed method are: (i) the hybridizable discontinuous Galerkin method to numerically solve the equations governing electromagnetic wave propagation in dielectric and metallic media, (ii) a reference domain formulation of the time-harmonic Maxwell's equations to account for arbitrary geometry variations; and (iii) proper orthogonal decomposition and empirical interpolation techniques to construct an efficient reduced model. To demonstrate effectiveness of the models developed, we analyze geometry sensitivities and explore optimal designs of a 3D periodic coaxial nanogap structure.
Date issued
2018-08
URI
https://hdl.handle.net/1721.1/126209
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Journal of computational physics
Publisher
Elsevier BV
Citation
Vidal-Codina, F., N. C. Nguyena and J. Peraire. “Computing parametrized solutions for plasmonic nanogap structures.” Journal of computational physics, vol. 366, 2018, pp. 89-106 © 2018 The Author(s)
Version: Author's final manuscript
ISSN
0021-9991

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.