Show simple item record

dc.contributor.authorWeiss, Rebecca J
dc.contributor.authorBates, Sara V
dc.contributor.authorSong, Ya’nan
dc.contributor.authorZhang, Yue
dc.contributor.authorHerzberg, Emily M
dc.contributor.authorChen, Yih-Chieh
dc.contributor.authorGong, Maryann M.
dc.contributor.authorChien, Isabel
dc.contributor.authorZhang, Lily
dc.contributor.authorMurphy, Shawn N
dc.contributor.authorGollub, Randy L
dc.contributor.authorGrant, P. E
dc.contributor.authorOu, Yangming
dc.date.accessioned2020-07-17T19:27:08Z
dc.date.available2020-07-17T19:27:08Z
dc.date.issued2019-11
dc.identifier.issn1479-5876
dc.identifier.urihttps://hdl.handle.net/1721.1/126245
dc.description.abstractBACKGROUND: Secondary and retrospective use of hospital-hosted clinical data provides a time- and cost-efficient alternative to prospective clinical trials for biomarker development. This study aims to create a retrospective clinical dataset of Magnetic Resonance Images (MRI) and clinical records of neonatal hypoxic ischemic encephalopathy (HIE), from which clinically-relevant analytic algorithms can be developed for MRI-based HIE lesion detection and outcome prediction. METHODS: This retrospective study will use clinical registries and big data informatics tools to build a multi-site dataset that contains structural and diffusion MRI, clinical information including hospital course, short-term outcomes (during infancy), and long-term outcomes (~ 2 years of age) for at least 300 patients from multiple hospitals. DISCUSSION: Within machine learning frameworks, we will test whether the quantified deviation from our recently-developed normative brain atlases can detect abnormal regions and predict outcomes for individual patients as accurately as, or even more accurately, than human experts.en_US
dc.publisherBioMed Centralen_US
dc.relation.isversionof10.1186/s12967-019-2119-5en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceBioMed Centralen_US
dc.titleMining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathyen_US
dc.typeArticleen_US
dc.identifier.citationWeiss, Rebecca J. et al. "Mining multi-site clinical data to develop machine learning MRI biomarkers: application to neonatal hypoxic ischemic encephalopathy." Journal of Translational Medicine 17 (Nov. 2019): no. 385 doi 10.1186/s12967-019-2119-5 ©2019 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalJournal of Translational Medicineen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-06-26T11:04:42Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.date.submission2020-06-26T11:04:42Z
mit.journal.volume17en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record